Molecular Genetics W/Lab
(Offered as BIOL 371 and BCBP 371) A study of the molecular mechanisms underlying the transmission and expression of genes. DNA replication and recombination, RNA synthesis and processing, and protein synthesis and modification will be examined. Both prokaryotic and eukaryotic systems will be analyzed, with an emphasis upon the regulation of gene expression. Application of modern molecular methods to biomedical and agricultural problems will also be considered. The laboratory component will focus upon recombinant DNA methodology.
Biochemistry
(Offered as BIOL 331, BCBP 331, and CHEM 331) Structure and function of biologically important molecules and their role(s) in life processes. Protein conformation, enzymatic mechanisms and selected metabolic pathways will be analyzed. Additional topics may include: nucleic acid conformation, DNA/protein interactions, signal transduction and transport phenomena. Four classroom hours and four hours of laboratory work per week. Offered jointly by the Departments of Biology and Chemistry. A student may not receive credit for both CHEM/BIOL 330 and BCBP/BIOL/CHEM 331.
Special Topics
Independent reading or research course. Full course. Does not normally count toward the major.
Fall and spring semesters. The Department.
Animal Physiology
This course will examine the function of tissues, organs, and organ systems, with an emphasis on the relationship between structure and function. Building outward from the level of the cell, we will study bodily processes including respiration, circulation, digestion and excretion. In addition, the course will address how different organisms regulate these complex processes and how ion and fluid balance is maintained.
Ecology
(Offered as BIOL 230 and ENST 210) A study of the relationships of plants and animals (including humans) to each other and to their environment. We'll start by considering the decisions an individual makes in its daily life concerning its use of resources, such as what to eat and where to live, and whether to defend such resources. We'll then move on to populations of individuals, and investigate species population growth, limits to population growth, and why some species are so successful as to become pests whereas others are on the road to extinction.