Statistics I

First semester of a two-semester sequence. Emphasis given to probability theory necessary for application to and understanding of statistical inference. Probability models, sample spaces, conditional probability, independence. Random variables, expectation, variance, and various discrete and continuous probability distributions. Sampling distributions, the Central Limit Theorem and normal approximations. Multivariate calculus introduced as needed.

Design Of Experiments

Planning, statistical analysis and interpretation of experiments. Designs considered include factorial designs, randomized blocks, latin squares, incomplete balanced blocks, nested and crossover designs, mixed models. Has a strong applied component involving the use of a statistical package for data analysis. Prerequisite: previous coursework in statistics.

Math Statistics II

Point and interval estimation, hypothesis testing, large sample results in estimation and testing; decision theory; Bayesian methods; analysis of discrete data. Also, topics from nonparametric methods, sequential methods, regression, analysis of variance. Prerequisite: Statistc 607 or equivalent.

Foundations of Data Science

The field of Data Science encompasses methods, processes, and systems that enable the extraction of useful knowledge from data. Foundations of Data Science introduces core data science concepts including computational and inferential thinking, along with core data science skills including computer programming and statistical methods. The course presents these topics in the context of hands-on analysis of real-world data sets, including economic data, document collections, geographical data, and social networks.

Statistics I

First semester of a two-semester sequence. Emphasis given to probability theory necessary for application to and understanding of statistical inference. Probability models, sample spaces, conditional probability, independence. Random variables, expectation, variance, and various discrete and continuous probability distributions. Sampling distributions, the Central Limit Theorem and normal approximations. Multivariate calculus introduced as needed.

Regression&Analysis/Variance

Regression analysis is the most popularly used statistical technique with application in almost every imaginable field. The focus of this course is on a careful understanding and of regression models and associated methods of statistical inference, data analysis, interpretation of results, statistical computation and model building.

Statistics I

First semester of a two-semester sequence. Emphasis given to probability theory necessary for application to and understanding of statistical inference. Probability models, sample spaces, conditional probability, independence. Random variables, expectation, variance, and various discrete and continuous probability distributions. Sampling distributions, the Central Limit Theorem and normal approximations. Multivariate calculus introduced as needed.

Intro To Statistics (colloq)

The non-honors version of the course covers basics of probability, random variables, binomial and normal distributions, central limit theorem, hypothesis testing, and simple linear regression. Through additional assigned readings and weekly discussions, the 1-credit honors colloquium will prepare students to conduct basic statistical studies by expanding on the material covered in Linear Regression and introducing the basics of ANOVA and analysis of categorical data, using the statistical package Minitab.

Regression&Analysis/Variance

Regression analysis is the most popularly used statistical technique with application in almost every imaginable field. The focus of this course is on a careful understanding and of regression models and associated methods of statistical inference, data analysis, interpretation of results, statistical computation and model building.
Subscribe to