ST-Time Series

This course aims to introduce basic concepts and modeling techniques for time series data. It emphasizes implementation of the modeling techniques and their practical application in analyzing actuarial and financial data. The open source program R will be used. Chapter 7, 8 and 9 of "Regression Modeling with Actuarial and Financial Applications", by E.W. Frees, Cambridge University Press, 2010 will be covered, if time allows.

Regression&Analysis/Variance

Regression analysis is the most popularly used statistical technique with application in almost every imaginable field. The focus of this course is on a careful understanding and of regression models and associated methods of statistical inference, data analysis, interpretation of results, statistical computation and model building.

Statistics I

First semester of a two-semester sequence. Emphasis given to probability theory necessary for application to and understanding of statistical inference. Probability models, sample spaces, conditional probability, independence. Random variables, expectation, variance, and various discrete and continuous probability distributions. Sampling distributions, the Central Limit Theorem and normal approximations. Multivariate calculus introduced as needed. Prerequisites: MATH 132, or 136. (Gen.Ed. R2)

Statistics I

First semester of a two-semester sequence. Emphasis given to probability theory necessary for application to and understanding of statistical inference. Probability models, sample spaces, conditional probability, independence. Random variables, expectation, variance, and various discrete and continuous probability distributions. Sampling distributions, the Central Limit Theorem and normal approximations. Multivariate calculus introduced as needed. Prerequisites: MATH 132, or 136. (Gen.Ed. R2)

Statistics II

Basic ideas of point and interval estimation and hypothesis testing; one and two sample problems, simple linear regression, topics from among one-way analysis of variance, discrete data analysis and nonparametric methods. Prerequisite: Statistc 515 or equivalent.

[Note: Because this course presupposes knowledge of basic math skills, it will satisfy the R1 requirement upon successful completion.]

Statistics II

Basic ideas of point and interval estimation and hypothesis testing; one and two sample problems, simple linear regression, topics from among one-way analysis of variance, discrete data analysis and nonparametric methods. Prerequisite: Statistc 515 or equivalent.

[Note: Because this course presupposes knowledge of basic math skills, it will satisfy the R1 requirement upon successful completion.]

Statistics I

First semester of a two-semester sequence. Emphasis given to probability theory necessary for application to and understanding of statistical inference. Probability models, sample spaces, conditional probability, independence. Random variables, expectation, variance, and various discrete and continuous probability distributions. Sampling distributions, the Central Limit Theorem and normal approximations. Multivariate calculus introduced as needed. Prerequisites: MATH 132, or 136. (Gen.Ed. R2)

Cross-Disciplinary Research

In this course, students complete an applied statistics field project that has been solicited from researchers in biological, physical, or social sciences. The instructor supplies applied as well as statistical methodology readings for the students. The readings serve to extend what students have learned in prior classes, and especially to help students learn to apply statistical methodology to problems from real-world applications. The students work in groups of 2, and they have to write a 10-20 page technical report and prepare a poster to summarize the project.
Subscribe to