Animal Behavior

Our first goal in this course will be to examine the mechanisms that underlie the expression of behavior. For example, how do predators locate prey, how do animals avoid becoming prey, and how do animals navigate through their worlds? To help answer these questions we will apply neurobiological, hormonal, genetic, and developmental perspectives. Our next goal in the course will be to examine the evolutionary bases of behavior, asking for example why animals move, forage, hide, communicate, and socialize as they do.

Animal Behavior

Our first goal in this course will be to examine the mechanisms that underlie the expression of behavior. For example, how do predators locate prey, how do animals avoid becoming prey, and how do animals navigate through their worlds? To help answer these questions we will apply neurobiological, hormonal, genetic, and developmental perspectives. Our next goal in the course will be to examine the evolutionary bases of behavior, asking for example why animals move, forage, hide, communicate, and socialize as they do.

Animal Behavior

Our first goal in this course will be to examine the mechanisms that underlie the expression of behavior. For example, how do predators locate prey, how do animals avoid becoming prey, and how do animals navigate through their worlds? To help answer these questions we will apply neurobiological, hormonal, genetic, and developmental perspectives. Our next goal in the course will be to examine the evolutionary bases of behavior, asking for example why animals move, forage, hide, communicate, and socialize as they do.

Plant Physiology

Presentation of principles needed to appreciate the physiological mechanisms unique to plants. General areas include components and functions of cell structures and mechanisms of development. Examples from recent literature consider genetic engineering, sensory processes, and protection from biotic and abiotic stresses. Prerequisite: BIOLOGY 151 and 152.

Plant Physiology

Presentation of principles needed to appreciate the physiological mechanisms unique to plants. General areas include components and functions of cell structures and mechanisms of development. Examples from recent literature consider genetic engineering, sensory processes, and protection from biotic and abiotic stresses. Prerequisite: BIOLOGY 151 and 152.

Plant Physiology

Presentation of principles needed to appreciate the physiological mechanisms unique to plants. General areas include components and functions of cell structures and mechanisms of development. Examples from recent literature consider genetic engineering, sensory processes, and protection from biotic and abiotic stresses. Prerequisite: BIOLOGY 151 and 152.

Human Microbiome/Health&Dis

Research into the microbiome?the indigenous microbial communities and the host environment that they inhabit?has changed our views of the roles played by microbes in human health and disease. Perhaps the most radical change is the realization that most of the microbes that inhabit our body supply crucial ecosystem services that benefit the entire host-microbe system. These services include the production of important resources, bioconversion of nutrients, and protection against pathogenic microbes.
Subscribe to