ST-Time Series

This course aims to introduce basic concepts and modeling techniques for time series data. It emphasizes implementation of the modeling techniques and their practical application in analyzing actuarial and financial data. The open source program R will be used. Chapter 7, 8 and 9 of "Regression Modeling with Actuarial and Financial Applications", by E.W. Frees, Cambridge University Press, 2010 will be covered, if time allows.

Regression&Analysis/Variance

Regression analysis is the most popularly used statistical technique with application in almost every imaginable field. The focus of this course is on a careful understanding and of regression models and associated methods of statistical inference, data analysis, interpretation of results, statistical computation and model building.

Statistics I

First semester of a two-semester sequence. Emphasis given to probability theory necessary for application to and understanding of statistical inference. Probability models, sample spaces, conditional probability, independence. Random variables, expectation, variance, and various discrete and continuous probability distributions. Sampling distributions, the Central Limit Theorem and normal approximations. Multivariate calculus introduced as needed. Prerequisites: MATH 132, or 136. (Gen.Ed. R2)
Subscribe to