Int Scientfc Comput

Introduction to computational techniques used in science and industry. Topics selected from root-finding, interpolation, data fitting, linear systems, numerical integration, numerical solution of differential equations, and error analysis. Prerequisites: MATH 233 and 235, or consent of instructor, and knowledge of a scientific programming language.

Lin Alg Appl Math

Basic concepts (over real or complex numbers): vector spaces, basis, dimension, linear transformations and matrices, change of basis, similarity. Study of a single linear operator: minimal and characteristic polynomial, eigenvalues, invariant subspaces, triangular form, Cayley-Hamilton theorem. Inner product spaces and special types of linear operators (over real or complex fields): orthogonal, unitary, self-adjoint, hermitian. Diagonalization of symmetric matrices, applications.

Lin Alg Appl Math

Basic concepts (over real or complex numbers): vector spaces, basis, dimension, linear transformations and matrices, change of basis, similarity. Study of a single linear operator: minimal and characteristic polynomial, eigenvalues, invariant subspaces, triangular form, Cayley-Hamilton theorem. Inner product spaces and special types of linear operators (over real or complex fields): orthogonal, unitary, self-adjoint, hermitian. Diagonalization of symmetric matrices, applications.

Lin Alg Appl Math

Basic concepts (over real or complex numbers): vector spaces, basis, dimension, linear transformations and matrices, change of basis, similarity. Study of a single linear operator: minimal and characteristic polynomial, eigenvalues, invariant subspaces, triangular form, Cayley-Hamilton theorem. Inner product spaces and special types of linear operators (over real or complex fields): orthogonal, unitary, self-adjoint, hermitian. Diagonalization of symmetric matrices, applications.

Lin Alg Appl Math

Basic concepts (over real or complex numbers): vector spaces, basis, dimension, linear transformations and matrices, change of basis, similarity. Study of a single linear operator: minimal and characteristic polynomial, eigenvalues, invariant subspaces, triangular form, Cayley-Hamilton theorem. Inner product spaces and special types of linear operators (over real or complex fields): orthogonal, unitary, self-adjoint, hermitian. Diagonalization of symmetric matrices, applications.

Intro Partial Differential Eq

The course will cover the following topics: Introduction to and classification of second-order partial differential equations, wave equation, heat equation and Laplace equation, D'Alembert solution to the wave equation, solution of the heat equation, maximum principle, energy methods, separation of variables, Fourier series, Fourier transform methods and operator eigenvalue problems. Time-permitting, we will briefly examine numerical methods for partial differential equations, as well as some select examples of nonlinear partial differential equations.
Subscribe to