Functns Complex Variable

An introduction to analytic functions; complex numbers, derivatives, conformal mappings, integrals. Cauchy’s theorem; power series, singularities, Laurent series, analytic continuation; special functions.

Requisite: MATH 211 and prior experience with mathematical proofs, or consent of the instructor. Limited to 25 students. Fall semester.

How to handle overenrollment: Preference is given to seniors.

Graph Theory

A graph is a collection of points with edges drawn between them. Graph theory was first introduced by Leonhard Euler in his solution to the Königsberg bridge problem in 1736. Since then, graph theory has become an active area of study in mathematics due both to its wide array of real life applications in biology, chemistry, social sciences and computer networking, and to its interactions with other branches of mathematics.

Linear Algebra W Applica

The study of vector spaces over the real and complex numbers, introducing the concepts of subspace, linear independence, basis, and dimension; systems of linear equations and their solution by Gaussian elimination; matrix operations; linear transformations and their representations by matrices; eigenvalues and eigenvectors; and inner product spaces. This course will feature both proofs and applications, with special attention paid to applied topics such as least squares and singular value decomposition.

Linear Algebra

The study of vector spaces over the real and complex numbers, introducing the concepts of subspace, linear independence, basis, and dimension; systems of linear equations and their solution by Gaussian elimination; matrix operations; linear transformations and their representations by matrices; eigenvalues and eigenvectors; and inner product spaces. MATH 271 will feature both proofs and applications, with special attention paid to the theoretical development of the subject.

Linear Algebra

The study of vector spaces over the real and complex numbers, introducing the concepts of subspace, linear independence, basis, and dimension; systems of linear equations and their solution by Gaussian elimination; matrix operations; linear transformations and their representations by matrices; eigenvalues and eigenvectors; and inner product spaces. MATH 271 will feature both proofs and applications, with special attention paid to the theoretical development of the subject.

Differential Equations

The study of differential equations is an important part of mathematics that involves many topics, both theoretical and practical. The course will cover first- and second-order ordinary differential equations, basic theorems concerning existence and uniqueness of solutions and continuous dependence on parameters, long-term behavior of solutions and approximate solutions.

Requisite: MATH 211 or consent of the instructor. Limited to 25 students. Fall semester.

How to handle overenrollment: Preference is given to math majors.

Combinatorial Geometry

This course is a survey of geometry in dimensions 2, 3, 4, and higher. We will consider questions such as: How do we know the angles of a triangle add up to 180 degrees? (Spoiler: usually they don't.) What are the different ways we could tile our kitchen floor? How many tennis balls fit in a bucket? How many regular polyhedra are there in four dimensions?

Mathematical Reasoning

This course serves as an introduction to mathematical reasoning and pays particular attention to helping students learn how to write proofs. The topics covered may include logic, elementary set theory, functions, relations and equivalence relations, mathematical induction, sequences, and quantifiers. Additional topics may vary from semester to semester.

Limited to 25 students. Spring and fall semesters. The Department. 

Mathematical Reasoning

This course serves as an introduction to mathematical reasoning and pays particular attention to helping students learn how to write proofs. The topics covered may include logic, elementary set theory, functions, relations and equivalence relations, mathematical induction, sequences, and quantifiers. Additional topics may vary from semester to semester.

Limited to 25 students. Spring and fall semesters. The Department. 

Multivariable Calculus

Elementary vector calculus; introduction to partial derivatives; multiple integrals in two and three dimensions; line integrals in the plane; Green’s theorem. 

Requisite: A grade of C or better in MATH 121 or placement into MATH 211 or consent of the Department. Limited to 30 students per section. Fall and spring semesters. The Department.

How to handle overenrollment: Students may be moved to another section that fits their course schedule.

Subscribe to