Research Design & Analysis

(Formerly MTH/SDS 290). A survey of statistical methods needed for scientific research, including planning data collection and data analyses that provide evidence about a research hypothesis. The course can include coverage of analyses of variance, interactions, contrasts, multiple comparisons, multiple regression, factor analysis, causal inference for observational and randomized studies and graphical methods for displaying data. Special attention is given to analysis of data from student projects such as theses and special studies. Statistical software is used for data analysis.

Program/Data Science: Python

This course covers the skills and tools needed to process, analyze and visualize data in Python and work on collaborative projects. Topics include functional and object oriented programming in Python, data wrangling in Pandas, visualization in Matplotlib in seaborn, as well as creating a reproducible workflow: debugging, testing and documenting programs, and effectively using version control. The major goal for the course is to create a viable, open-source Python package like those in the Python Package Index (PyPI). Prerequisites: SDS 192 and CSC 110. Enrollment limited to 40.

Programming Data Science: R

This course is not about data analysis—rather, students learn the R programming language at a deep level. Topics may include data structures, control flow, regular expressions, functions, environments, functional programming, object-oriented programming, debugging, testing, version control, documentation, literate programming, code review and package development. The major goal for the course is to contribute to a viable, collaborative, open-source, publishable R package. Prerequisites: SDS 192 and CSC 110, or equivalent. Enrollment limited to 40.

Colq:Data Science, Movies

Movies tell stories with data and about data. How is the understanding of data, data science, and the power of data science influenced and reinforced by popular media? Students explore the social, ethical, and cultural dimensions of data and data science using contemporary film and TV shows. Through close reading of visual media, students develop critical thinking about data provenance, data integrity, and the social stakes of data science.

Data Journalism

Data journalism is the practice of telling stories with data. This course focuses on journalistic practices, interviewing data as a source, and interpreting results in context. The course discusses the importance of audience in a journalistic context and focuses on statistical ideas of variation and bias. The course includes hands-on work with data, using appropriate computational tools such as R, Python, and data APIs. In addition, the course explores the use of visualization and storytelling tools such as Tableau, plot.ly, and D3.

Visual Analytics

Offered as CSC 235 and SDS 235. Visual analytics techniques can help people to derive insight from massive, dynamic, ambiguous and often conflicting data. During this course, students learn the foundations of the emerging, multidisciplinary field of visual analytics and apply these techniques toward a focused research problem in a domain of personal interest. Students who elect to take this course as a programming intensive course should have previously taken CSC 212. In this track, students learn to use R, Python and HTML5/JavaScript to develop custom visual analytic tools.

Visual Analytics

Offered as CSC 235 and SDS 235. Visual analytics techniques can help people to derive insight from massive, dynamic, ambiguous and often conflicting data. During this course, students learn the foundations of the emerging, multidisciplinary field of visual analytics and apply these techniques toward a focused research problem in a domain of personal interest. Students who elect to take this course as a programming intensive course should have previously taken CSC 212. In this track, students learn to use R, Python and HTML5/JavaScript to develop custom visual analytic tools.

Intro to Statistics

(Formerly SDS 201). An application-oriented introduction to statistical modeling, covering topics of descriptive statistics, data visualization, point and interval estimates, bivariate and multiple regression modeling, and inferential hypothesis tests using both distributional and resampling methods. Lectures include “hands on” demonstrations of statistical phenomenon, with labs and assignments that emphasize analysis of real data. Students who have completed SDS 100 in a previous semester need not repeat it. Corequisite: SDS 100.

Intro to Statistics

(Formerly SDS 201). An application-oriented introduction to statistical modeling, covering topics of descriptive statistics, data visualization, point and interval estimates, bivariate and multiple regression modeling, and inferential hypothesis tests using both distributional and resampling methods. Lectures include “hands on” demonstrations of statistical phenomenon, with labs and assignments that emphasize analysis of real data. Students who have completed SDS 100 in a previous semester need not repeat it. Corequisite: SDS 100.

Intro to Statistics

(Formerly SDS 201). An application-oriented introduction to statistical modeling, covering topics of descriptive statistics, data visualization, point and interval estimates, bivariate and multiple regression modeling, and inferential hypothesis tests using both distributional and resampling methods. Lectures include “hands on” demonstrations of statistical phenomenon, with labs and assignments that emphasize analysis of real data. Students who have completed SDS 100 in a previous semester need not repeat it. Corequisite: SDS 100.
Subscribe to