Accel Begin Portuguese

This is an accelerated beginning language and culture course (one-semester) that presents a condensed introduction to Brazilian Portuguese with the objective of creating a foundation for students in all four language modalities: listening, reading, writing and speaking. The course also introduces aspects of the cultures and societies of Lusophone (Portuguese-speaking) countries. Students can enroll in a POR 200 course the following semester. Enrollment limited to 20.

Adv T-General Relativity

This course covers the basics of general relativity. The class discusses tensors and metric spaces and re-frames special relativity in those terms. Students then generalize the rules of special relativity to non-inertial frames and use the equivalence principle to extend those ideas to spaces with gravitational fields. The class explores “Einstein’s equation” relating matter and geometry. Finally, students discuss basic applications, including black holes, gravitational waves and cosmology. Prerequisites: PHY 210 and PHY 215, or equivalent.

Experimental Physics

An advanced laboratory course for juniors and seniors in which students learn and make use of  advanced signal recovery methods to design and perform laboratory experiments drawn from a wide range of topics in modern and contemporary physics. Students planning on special studies or honors work in experimental physics as seniors should take PHY 350 during their junior year. Prerequisites: PHY 210, PHY 215 and PHY 240, or equivalent. Enrollment limited to 12.

Experimental Physics

An advanced laboratory course for juniors and seniors in which students learn and make use of  advanced signal recovery methods to design and perform laboratory experiments drawn from a wide range of topics in modern and contemporary physics. Students planning on special studies or honors work in experimental physics as seniors should take PHY 350 during their junior year. Prerequisites: PHY 210, PHY 215 and PHY 240, or equivalent. Enrollment limited to 12.

Experimental Physics

An advanced laboratory course for juniors and seniors in which students learn and make use of  advanced signal recovery methods to design and perform laboratory experiments drawn from a wide range of topics in modern and contemporary physics. Students planning on special studies or honors work in experimental physics as seniors should take PHY 350 during their junior year. Prerequisites: PHY 210, PHY 215 and PHY 240, or equivalent. Enrollment limited to 12.

Quantum Mechanics

The formal structure of nonrelativistic quantum mechanics, including operator methods. Wave packets; quantum mechanical scattering and tunneling; central potentials; matrix mechanics of spin, addition of angular momenta; corrections to the hydrogen spectrum; identical particles and exchange symmetry; EPR paradox, Bell’s Theorem and the interpretation of quantum mechanics. PHY 317 recommended. Prerequisites: PHY 210 and PHY 215, or equivalent.

Physics Pedagogy: Theory

A course emphasizing the pedagogy in physics based on Physics Education Research (PER). Readings and discussion emphasize the research literature and strategies for implementing successful and effective methods of teaching physics at the introductory level in the classroom. May be repeated once for credit. S/U only. Prerequisites: (PHY 111 and PHY 112) or (PHY 113 and PHY 114) or (PHY 117 or PHY 119). Instructor permission required.

Light, Relativity and Quantum

The special theory of relativity, the wave equation and mathematics of waves, optical phenomena of interference and diffraction, particle and wave models of matter and radiation, Bohr model of atomic structure, introduction to fundamental principles and problems in quantum mechanics, and introduction to nuclear physics. Prerequisites: [(PHY 113 and PHY 114) or (PHY 118 or PHY 119)]; and MTH 112.

Computational Methods

This course provides an overview of commonly used computational methods and their applications to physics problems. Using the Python programming language, students begin with learning how programs send instructions to computers, move on to simple data visualization, error analysis and uncertainty in computational calculations, and then progress to numerical integration and differentiation, machine learning and stochastic methods. In each case, students examine the method’s applications to relevant physics scenarios.
Subscribe to