Tpcs In Geometry I

Inverse and implicit functions theorems, rank of a map. Regular and critical values. Sard's theorem. Differentiable manifolds, submanifolds, embeddings, immersions and diffeomorphisms. Tangent space and bundle, differential of a map. Partitions of unity, orientation, transversality embed-dings in Rn. Vector fields, local flows. Lie bracket, Frobenius theorem. Lie groups, matrix Lie groups, left invariant vector fields, tensor fields, differential form, integration, closed and exact forms. DeRham's cohomology, vector bundles, connections, curvature.

Int Numrcl Analys I

The analysis and application of the fundamental numerical methods used to solve a common body of problems in science. Linear system solving: direct and iterative methods. Interpolation of data by function. Solution of nonlinear equations and systems of equations. Numerical integration techniques. Solution methods for ordinary differential equations. Emphasis on computer representation of numbers and its consequent effect on error propagation. Prerequisites: advanced calculus, knowledge of a scientific programming language.

Diff Eq&Dynmc Sys I

Classical theory of ordinary differential equations and some of its modern developments in dynamical systems theory. Linear systems and exponential matrix solutions. Well-posedness for nonlinear systems. Qualitative theory: limit sets, invariant set and manifolds. Stability theory: linearization about an equilibrium, Lyapunov functions. Autonomous two-dimensional systems and other special systems. Prerequisites: advanced calculus, linear algebra and basic ODE.

Th&Fnctn-Real Vrbl I

General theory of measure and integration and its specialization to Euclidean spaces and Lebesgue measure; modes of convergence, Lp spaces, product spaces, differentiation of measures and functions, signed measures, Radon-Nikodym theorem.

Algebra I

Introduction to groups, rings, and fields. Direct sums and products of groups, cosets, Lagrange's theorem, normal subgroups, quotient groups. Polynomial rings, UFDs and PIDs, division rings. Fields of fractions, GCD and LCM, irreducibility criteria for polynomials. Prime field, characteristic, field extension, finite fields. Some topics from Math 612 included.

Int Scientfc Comput

Introduction to computational techniques used in science and industry. Topics selected from root-finding, interpolation, data fitting, linear systems, numerical integration, numerical solution of differential equations, and error analysis. Prerequisites: MATH 233 and 235, or consent of instructor, and knowledge of a scientific programming language.

Honors Research

The Commonwealth Honors College thesis or project is intended to provide students with the opportunity to work closely with faculty members to define and carry out in-depth research or creative endeavors. It provides excellent preparation for students who intend to continue their education through graduate study or begin their professional careers. The student works closely with their 499Y Honors Research sponsor to pursue research on a topic or question of special interest to them in preparation for writing a 499T Honors Thesis or completing a 499P Honors Project.
Subscribe to