Math Statistics I

Probability theory, including random variables, independence, laws of large numbers, central limit theorem; statistical models; introduction to point estimation, confidence intervals, and hypothesis testing. Prerequisite: advanced calculus and linear algebra, or consent of instructor.

Intro/Statistical Learning

Introduction to some modern statistical regression and classification techniques including logistic regression, nearest neighbor methods, discriminant analysis, kernel smoothing, smoothing spline, local regression, generalized additive models, decision trees, random forests, support vector machines and deep learning. Clustering methods such as K-means and hierarchical clustering will be introduced. Finally, there will also topics on resampling-based model evaluation methods and regularization-based model selection methods.

Statistical Computing

This course will introduce computing tools needed for statistical analysis including data acquisition from database, data exploration and analysis, numerical analysis and result presentation. Advanced topics include parallel computing, simulation and optimization, and package creation. The class will be taught in a modern statistical computing language.

Statistical Computing

This course will introduce computing tools needed for statistical analysis including data acquisition from database, data exploration and analysis, numerical analysis and result presentation. Advanced topics include parallel computing, simulation and optimization, and package creation. The class will be taught in a modern statistical computing language.

Analysis of Discrete Data

Discrete/Categorical data are prevalent in many applied fields, including biological and medical sciences, social and behavioral sciences, and economics and business. This course provides an applied treatment of modern methods for visualizing and analyzing broad patterns of association in discrete/categorical data.

Design Of Experiments

Planning, statistical analysis and interpretation of experiments. Designs considered include factorial designs, randomized blocks, latin squares, incomplete balanced blocks, nested and crossover designs, mixed models. Has a strong applied component involving the use of a statistical package for data analysis. Prerequisite: previous coursework in statistics.

Regression&Analysis/Variance

Regression analysis is the most popularly used statistical technique with application in almost every imaginable field. The focus of this course is on a careful understanding and of regression models and associated methods of statistical inference, data analysis, interpretation of results, statistical computation and model building.

Regression&Analysis/Variance

Regression analysis is the most popularly used statistical technique with application in almost every imaginable field. The focus of this course is on a careful understanding and of regression models and associated methods of statistical inference, data analysis, interpretation of results, statistical computation and model building.

Statistics II

Basic ideas of point and interval estimation and hypothesis testing; one and two sample problems, simple linear regression, topics from among one-way analysis of variance, discrete data analysis and nonparametric methods. Prerequisite: Statistc 515 or equivalent. (Gen. Ed. R2) [Note: Because this course presupposes knowledge of basic math skills, it will satisfy the R1 requirement upon successful completion.]
Subscribe to