P- STEM Ambassadors Research

For members of the STEM Ambassadors Program, who will conduct independent or semi-independent research in a faculty lab or with an outside partner. Members are responsible for finding a host advisor in a field of their interest, and will be expected to track milestones and do end of semester reporting. Students will also participate in program events and learning outside the classroom hours.

P- STEM Outreach & Engagement

For members of the STEM Ambassadors Program, who will work closely with the mentoring branch of the program, create social justice and awareness programming, initiate and foster on- and off- campus partnerships, and spearhead networking and social events related to STEM fields and experiences. Students will develop individual projects related to their interests. Students will also participate in program events and learning outside the classroom hours.

Neurobiology

Biology of nerve cells and cellular interactions in nervous systems. Lectures integrate structural, functional, molecular, and developmental approaches. Topics include neuronal anatomy and physiology, neural induction and pattern formation, development of neuronal connections, membrane potentials and neuronal signals, synapses, sensory systems, control of movement, systems neuroscience and neural plasticity. With Biology 494LI, this course satisfies the Integrative Experience requirement for BS-Biol majors.

Histology

In this course we explore the cellular structure and function of human tissues and organ systems. The laboratory component offers a unique opportunity for you to develop and refine your skills in microscopy and visual identification of cells, tissues, and organs as well as tissue sectioning, staining, immunohistochemistry, and imaging. This includes a semester-long group project where you will prepare samples, section, stain, and analyze an organ of your choice and explore how the histology of this organ is altered by disease.

Histology

In this course we explore the cellular structure and function of human tissues and organ systems. The laboratory component offers a unique opportunity for you to develop and refine your skills in microscopy and visual identification of cells, tissues, and organs as well as tissue sectioning, staining, immunohistochemistry, and imaging. This includes a semester-long group project where you will prepare samples, section, stain, and analyze an organ of your choice and explore how the histology of this organ is altered by disease.

Gene and Genome Analysis

In this class we will discuss concepts and applications of modern DNA technology including an introduction to the basic concepts pertaining to the emerging field of genomics. We will begin by describing key molecular methods (cloning, sequencing, blotting, PCR) and how they are used in gene analysis. We will then move on to consider how entire genomes are analyzed, and will familiarize ourselves with some of the basic bioinformatics' tools that are commonly used by working biologists. Finally we will consider the methods used to manipulate genomes as a means to determining gene function.

Gene and Genome Analysis

In this class we will discuss concepts and applications of modern DNA technology including an introduction to the basic concepts pertaining to the emerging field of genomics. We will begin by describing key molecular methods (cloning, sequencing, blotting, PCR) and how they are used in gene analysis. We will then move on to consider how entire genomes are analyzed, and will familiarize ourselves with some of the basic bioinformatics' tools that are commonly used by working biologists. Finally we will consider the methods used to manipulate genomes as a means to determining gene function.

Gene and Genome Analysis

In this class we will discuss concepts and applications of modern DNA technology including an introduction to the basic concepts pertaining to the emerging field of genomics. We will begin by describing key molecular methods (cloning, sequencing, blotting, PCR) and how they are used in gene analysis. We will then move on to consider how entire genomes are analyzed, and will familiarize ourselves with some of the basic bioinformatics' tools that are commonly used by working biologists. Finally we will consider the methods used to manipulate genomes as a means to determining gene function.
Subscribe to