Circuits and Electronics I

Mathematical models for analog circuit elements such as resistors, capacitors, opamps and MOSFETs as switches. Basic circuit laws and network theorems applied to dc, transient, and steady-state response of first- and second-order circuits. Modeling circuit responses using differential equations Computer and laboratory projects. NOTE: Grades of C or better in MATH 132 and PHYSICS 152 are strongly recommended.

Circuits and Electronics I

Mathematical models for analog circuit elements such as resistors, capacitors, opamps and MOSFETs as switches. Basic circuit laws and network theorems applied to dc, transient, and steady-state response of first- and second-order circuits. Modeling circuit responses using differential equations Computer and laboratory projects. NOTE: Grades of C or better in MATH 132 and PHYSICS 152 are strongly recommended.

Circuits and Electronics I

Mathematical models for analog circuit elements such as resistors, capacitors, opamps and MOSFETs as switches. Basic circuit laws and network theorems applied to dc, transient, and steady-state response of first- and second-order circuits. Modeling circuit responses using differential equations Computer and laboratory projects. NOTE: Grades of C or better in MATH 132 and PHYSICS 152 are strongly recommended.

Circuits and Electronics I

Mathematical models for analog circuit elements such as resistors, capacitors, opamps and MOSFETs as switches. Basic circuit laws and network theorems applied to dc, transient, and steady-state response of first- and second-order circuits. Modeling circuit responses using differential equations Computer and laboratory projects. NOTE: Grades of C or better in MATH 132 and PHYSICS 152 are strongly recommended.

Circuits and Electronics I

Mathematical models for analog circuit elements such as resistors, capacitors, opamps and MOSFETs as switches. Basic circuit laws and network theorems applied to dc, transient, and steady-state response of first- and second-order circuits. Modeling circuit responses using differential equations Computer and laboratory projects. NOTE: Grades of C or better in MATH 132 and PHYSICS 152 are strongly recommended.

Circuits and Electronics I

Mathematical models for analog circuit elements such as resistors, capacitors, opamps and MOSFETs as switches. Basic circuit laws and network theorems applied to dc, transient, and steady-state response of first- and second-order circuits. Modeling circuit responses using differential equations Computer and laboratory projects. NOTE: Grades of C or better in MATH 132 and PHYSICS 152 are strongly recommended.

Circuits and Electronics I

Mathematical models for analog circuit elements such as resistors, capacitors, opamps and MOSFETs as switches. Basic circuit laws and network theorems applied to dc, transient, and steady-state response of first- and second-order circuits. Modeling circuit responses using differential equations Computer and laboratory projects. NOTE: Grades of C or better in MATH 132 and PHYSICS 152 are strongly recommended.

Computational Tools for ECE

An introduction to using computer applications to solve engineering problems. Learning the rudiments of MATLAB, Excel, and Python in order to design and/or visualize systems. Emphasis is on learning to use these applications appropriately and efficiently, with well structured code that is commented and includes checks to find errors.
Subscribe to