Programming Data Science: R

This course is not about data analysis—rather, students learn the R programming language at a deep level. Topics may include data structures, control flow, regular expressions, functions, environments, functional programming, object-oriented programming, debugging, testing, version control, documentation, literate programming, code review and package development. The major goal for the course is to contribute to a viable, collaborative, open-source, publishable R package. Prerequisites: SDS 192 and CSC 110, or equivalent. Enrollment limited to 40.

Colq:Data Science, Movies

Movies tell stories with data and about data. How is the understanding of data, data science, and the power of data science influenced and reinforced by popular media? Students explore the social, ethical, and cultural dimensions of data and data science using contemporary film and TV shows. Through close reading of visual media, students develop critical thinking about data provenance, data integrity, and the social stakes of data science.

Colq:Data Science, Movies

Movies tell stories with data and about data. How is the understanding of data, data science, and the power of data science influenced and reinforced by popular media? Students explore the social, ethical, and cultural dimensions of data and data science using contemporary film and TV shows. Through close reading of visual media, students develop critical thinking about data provenance, data integrity, and the social stakes of data science.

Intro to Statistics

(Formerly SDS 201). An application-oriented introduction to statistical modeling, covering topics of descriptive statistics, data visualization, point and interval estimates, bivariate and multiple regression modeling, and inferential hypothesis tests using both distributional and resampling methods. Lectures include “hands on” demonstrations of statistical phenomenon, with labs and assignments that emphasize analysis of real data. Students who have completed SDS 100 in a previous semester need not repeat it. Corequisite: SDS 100.

Intro to Statistics

(Formerly SDS 201). An application-oriented introduction to statistical modeling, covering topics of descriptive statistics, data visualization, point and interval estimates, bivariate and multiple regression modeling, and inferential hypothesis tests using both distributional and resampling methods. Lectures include “hands on” demonstrations of statistical phenomenon, with labs and assignments that emphasize analysis of real data. Students who have completed SDS 100 in a previous semester need not repeat it. Corequisite: SDS 100.

Intro to Statistics

(Formerly SDS 201). An application-oriented introduction to statistical modeling, covering topics of descriptive statistics, data visualization, point and interval estimates, bivariate and multiple regression modeling, and inferential hypothesis tests using both distributional and resampling methods. Lectures include “hands on” demonstrations of statistical phenomenon, with labs and assignments that emphasize analysis of real data. Students who have completed SDS 100 in a previous semester need not repeat it. Corequisite: SDS 100.

Intro to Statistics

(Formerly SDS 201). An application-oriented introduction to statistical modeling, covering topics of descriptive statistics, data visualization, point and interval estimates, bivariate and multiple regression modeling, and inferential hypothesis tests using both distributional and resampling methods. Lectures include “hands on” demonstrations of statistical phenomenon, with labs and assignments that emphasize analysis of real data. Students who have completed SDS 100 in a previous semester need not repeat it. Corequisite: SDS 100.

Intro to Statistics

(Formerly SDS 201). An application-oriented introduction to statistical modeling, covering topics of descriptive statistics, data visualization, point and interval estimates, bivariate and multiple regression modeling, and inferential hypothesis tests using both distributional and resampling methods. Lectures include “hands on” demonstrations of statistical phenomenon, with labs and assignments that emphasize analysis of real data. Students who have completed SDS 100 in a previous semester need not repeat it. Corequisite: SDS 100.

Intro to Data Sciences

An introduction to data science using Python, R and SQL. Students learn how to scrape, process and clean data from the web; manipulate data in a variety of formats; contextualize variation in data; construct point and interval estimates using resampling techniques; visualize multidimensional data; design accurate, clear and appropriate data graphics; create data maps and perform basic spatial analysis; and query large relational databases. Students who have completed SDS 100 in a previous semester need not repeat it. Corequisite: SDS 100. Enrollment limited to 40.

Intro to Data Sciences

An introduction to data science using Python, R and SQL. Students learn how to scrape, process and clean data from the web; manipulate data in a variety of formats; contextualize variation in data; construct point and interval estimates using resampling techniques; visualize multidimensional data; design accurate, clear and appropriate data graphics; create data maps and perform basic spatial analysis; and query large relational databases. Students who have completed SDS 100 in a previous semester need not repeat it. Corequisite: SDS 100. Enrollment limited to 40.
Subscribe to