ST-Categorical Data Analysis
Distribution and inference for binomial and multinomial variables with contingency tables, generalized linear models, logistic regression for binary responses, logit models for multiple response categories, loglinear models, inference for matched-pairs and correlated clustered data. Prerequisites: Previous course work in probability and mathematical statistics including knowledge of distribution theory, estimation, confidence intervals, hypothesis testing and multiple linear regression; e.g. Stat 516 and Stat 525 (or equivalent). Prior programming experience.