Foundations of Data Science

The field of Data Science encompasses methods, processes, and systems that enable the extraction of useful knowledge from data. Foundations of Data Science introduces core data science concepts including computational and inferential thinking, along with core data science skills including computer programming and statistical methods. The course presents these topics in the context of hands-on analysis of real-world data sets, including economic data, document collections, geographical data, and social networks.

Introduction to Algorithms

The design and analysis of efficient algorithms for important computational problems. Emphasis on the relationships between algorithms and data structures and on measures of algorithmic efficiency. Sorting (heapsort, mergesort, quicksort), searching, graph algorithms. Experimental analysis of algorithms also emphasized. Use of computer required.

Introduction to Algorithms

The design and analysis of efficient algorithms for important computational problems. Emphasis on the relationships between algorithms and data structures and on measures of algorithmic efficiency. Sorting (heapsort, mergesort, quicksort), searching, graph algorithms. Experimental analysis of algorithms also emphasized. Use of computer required.

Programming w/Data Structures

The course introduces and develops methods for designing and implementing abstract data types using the Java programming language. The main focus is on how to implement abstract data collections and their associated operations. Specific implementations include linked structures, recursive structures, binary trees, balanced trees, and hash tables. Algorithm analysis and asymptotic bounding of implementations is a major topic throughout the course. The topics covered in this course are fundamental to programming and are essential to further computer science courses.

Introduction to Algorithms

The design and analysis of efficient algorithms for important computational problems. Emphasis on the relationships between algorithms and data structures and on measures of algorithmic efficiency. Sorting (heapsort, mergesort, quicksort), searching, graph algorithms. Experimental analysis of algorithms also emphasized. Use of computer required.

Intro Problem Solving W/Comp

An introductory course in problem solving, using the programming language Java. Focuses on the fundamental concepts of problem solving and on computer implementation. Intended for computer science majors or those applying for the major. Satisfactory completion is a prerequisite for all higher-level computer science courses. Use of a laptop computer required. Prerequisite: high school algebra and basic math skills (R1). (Gen.Ed. R2)

TeachngAssist/TomorrowsFaculty

Teaching Assistants as Tomorrow's Faculty prepares Teaching Assistants (TAs) at the College of Information and Computer Sciences to fulfill their duties in an effective and pedagogically sound manner. The one credit (not repeatable) course is semester long and taken by all TAs prior to assuming assistantship.
Subscribe to