Intro Problem Solving W/Comp

An introductory course in problem solving, using the programming language Java. Focuses on the fundamental concepts of problem solving and on computer implementation. Intended for computer science majors or those applying for the major. Satisfactory completion is a prerequisite for all higher-level computer science courses. Use of a laptop computer required. Prerequisite: high school algebra and basic math skills (R1). (Gen.Ed. R2)

TeachngAssist/TomorrowsFaculty

Teaching Assistants as Tomorrow's Faculty prepares Teaching Assistants (TAs) at the College of Information and Computer Sciences to fulfill their duties in an effective and pedagogically sound manner. The one credit (not repeatable) course is semester long and taken by all TAs prior to assuming assistantship.

Machine Learning

Introduction to core machine learning models and algorithms for classification, regression, dimensionality reduction and clustering. The course will cover the mathematical foundations behind the most common machine learning algorithms, and the effective use in solving real-world applications. Requires a strong mathematical background and knowledge of one high-level programming language such as Python.

Machine Learning

Introduction to core machine learning models and algorithms for classification, regression, dimensionality reduction and clustering. The course will cover the mathematical foundations behind the most common machine learning algorithms, and the effective use in solving real-world applications. Requires a strong mathematical background and knowledge of one high-level programming language such as Python.

S-Cmptr Crime Law:Invstg/Prvcy

A study, analysis, and discussion of the legal issues related to crimes involving computers and networks, including topical actions by dissidents and governments. We will also study the technologies of forensic investigation, intelligence gathering, privacy enhancement, and censorship resistance. Our main legal topics will include recent and important case law, statutes, and constitutional clauses concerning authorization, access, search and seizure, wiretaps, the right to privacy, and FISA.

Neural Networks: Modern Intro

This course will focus on modern, practical methods for deep learning with neural networks. The course will begin with a description of simple classifiers such as perceptrons and logistic regression classifiers, and move on to standard neural networks, convolutional neural networks, some elements of recurrent neural networks, and transformers. The emphasis will be on understanding the basics and on practical application more than on theory. Many applications will be in computer vision, but we will make an effort to cover some natural language processing (NLP) applications as well.

Operating Systems

The design and operation of modern computer operating systems. Review of capabilities of typical computer hardware. Topics include command language interpreter (the shell), processes, concurrency, inter-process communication, linking and loading, memory management, transactions, file systems, distributed systems, security, and protection. Programming projects in Java and C.

Systems for Data Science

In this course, students will learn the fundamentals behind large-scale systems in the context of data science. We will cover the issues involved in scaling up (to many processors) and out (to many nodes) parallelism in order to perform fast analyses on large datasets. These include locality and data representation, concurrency, distributed databases and systems, performance analysis and understanding. We will explore the details of existing and emerging data science platforms, including MapReduce-Hadoop, Spark, and more.
Subscribe to