Systems for Data Science

In this course, students will learn the fundamentals behind large-scale systems in the context of data science. We will cover the issues involved in scaling up (to many processors) and out (to many nodes) parallelism in order to perform fast analyses on large datasets. These include locality and data representation, concurrency, distributed databases and systems, performance analysis and understanding. We will explore the details of existing and emerging data science platforms, including MapReduce-Hadoop, Spark, and more.

Programming w/Data Structures

The course introduces and develops methods for designing and implementing abstract data types using the Java programming language. The main focus is on how to implement abstract data collections and their associated operations. Specific implementations include linked structures, recursive structures, binary trees, balanced trees, and hash tables. Algorithm analysis and asymptotic bounding of implementations is a major topic throughout the course. The topics covered in this course are fundamental to programming and are essential to further computer science courses.

Programming w/Data Structures

The course introduces and develops methods for designing and implementing abstract data types using the Java programming language. The main focus is on how to implement abstract data collections and their associated operations. Specific implementations include linked structures, recursive structures, binary trees, balanced trees, and hash tables. Algorithm analysis and asymptotic bounding of implementations is a major topic throughout the course. The topics covered in this course are fundamental to programming and are essential to further computer science courses.

Computer Systems Principles

Large-scale software systems like Google - deployed over a world-wide network of hundreds of thousands of computers - have become a part of our lives. These are systems success stories - they are reliable, available ("up" nearly all the time), handle an unbelievable amount of load from users around the world, yet provide virtually instantaneous results. On the other hand, many computer systems don't perform nearly as well as Google - hence the now-cliche "the system is down." In this class, we study the scientific principles behind the construction of high-performance, scalable systems.

Computer Systems Principles

Large-scale software systems like Google - deployed over a world-wide network of hundreds of thousands of computers - have become a part of our lives. These are systems success stories - they are reliable, available ("up" nearly all the time), handle an unbelievable amount of load from users around the world, yet provide virtually instantaneous results. On the other hand, many computer systems don't perform nearly as well as Google - hence the now-cliche "the system is down." In this class, we study the scientific principles behind the construction of high-performance, scalable systems.
Subscribe to