Intro Computr & Ntwrk Security

This course provides an introduction to the principles and practice of computer and network security. A focus on both fundamentals and practical information will be stressed. The three key topics of this course are cryptography, privacy, and network security. Subtopics include ciphers, hashes, key exchange, security services (integrity, availability, confidentiality, etc.), security attacks, vulnerabilities, anonymous communications, and countermeasures.

Reasoning Under Uncertainty

Development of mathematical reasoning skills for problems that involve uncertainty. Counting and probability -- basic counting problems, probability definitions, mean, variance, binomial distribution, discrete random variables, continuous random variables, Markov and Chebyshev bounds, Laws of large number, and central limit theorem. Probabilistic reasoning -- conditional probability and odds, Bayes' Law, Markov Chains, Bayesian Network, Markov Decision Processes.

Intro to Programming

A complete introduction to computer programming using the Python language. Topics include coverage of all the supported data types and program code structures, functions (up through lambda expressions and recursion), reasoning about and debugging existing code, implementation of custom libraries, selection of data structures, and the fundamentals of object-oriented programming.

Software Engineering

In this course, students learn and gain practical experience with software engineering principles and techniques. The practical experience centers on a semester-long team project in which a software development project is carried through all the stages of the software life cycle. Topics in this course include requirements analysis, specification, design, abstraction, programming style, testing, maintenance, communication, teamwork, and software project management. Particular emphasis is placed on communication and negotiation skills and on designing and developing maintainable software.

Machine Learning

Machine learning is the computational study of artificial systems that can adapt to novel situations, discover patterns from data, and improve performance with practice. This course will cover the mathematical foundations of supervised and unsupervised learning. The course will provide a state-of-the-art overview of the field, with an emphasis on implementing and deriving learning algorithms for a variety of models from first principles.

S-Theory of Computation

The theory seminar is a weekly meeting in which topics of interest in the theory of computation - broadly construed - are presented. This is sometimes new research by visitors or local people. It is sometimes work in progress, and it is sometimes recent material of others that some of us present in order to learn and share. This is a one-credit seminar which may be taken repeatedly for credit. May be repeated for credit up to six times.

Advanced Algorithms

The design and analysis of efficient algorithms for important computational problems. Paradigms for algorithm design including Divide and Conquer, Greedy Algorithms, Dynamic Programming; and, the use of Randomness and Parallelism in algorithms. Algorithms for Sorting and Searching, Graph Algorithms, Approximation Algorithms for NP Complete Problems, and others. Prerequisites: The mathematical maturity expected of incoming Computer Science graduate students, knowledge of algorithms at the level of COMPSCI 311.
Subscribe to