Generalized Lin Models

Linear regression and logistic regression are powerful tools for statistical analysis, but they are only a subset of a broader class of generalized linear models. This course will explore the theory behind and practical application of generalized linear models for responses that do not have a normal distribution, including counts, categories, and proportions. We will also delve into extensions of these models for dependent responses such as repeated measures over time.

Stats of Competition

Competitions, which can include individual and team sports, eSports, tabletop gaming, preference formation, and elections, produce data dependent on interrelated competitors and the decision, league, or tournament format. In this course, students will learn to think about the ways a wide variety of statistical methodologies can be applied to the complex and unique data that emerge through competition, including paired comparisons, decision analysis, rank-based and kernel methods, and spatio-temporal methods.

Theoretical Statistics

(Offered as STAT 370 and MATH 370) This course examines the theory underlying common statistical procedures including visualization, exploratory analysis, estimation, hypothesis testing, modeling, and Bayesian inference. Topics include maximum likelihood estimators, sufficient statistics, confidence intervals, hypothesis testing and test selection, non-parametric procedures, and linear models.

Data Science

Computational data analysis is an essential part of modern statistics and data science. This course provides a practical foundation for students to think with data by participating in the entire data analysis cycle. Students will generate statistical questions and then address them through data acquisition, cleaning, transforming, modeling, and interpretation. This course will introduce students to tools for data management and wrangling that are common in data science and will apply those tools to real-world applications.

Data Science

Computational data analysis is an essential part of modern statistics and data science. This course provides a practical foundation for students to think with data by participating in the entire data analysis cycle. Students will generate statistical questions and then address them through data acquisition, cleaning, transforming, modeling, and interpretation. This course will introduce students to tools for data management and wrangling that are common in data science and will apply those tools to real-world applications.

Intermediate Statistics

This course is an intermediate applied statistics course that builds on the statistical data analysis methods introduced in STAT 111/111E or STAT 135. Students will learn how to pose a statistical question, perform appropriate statistical analysis of the data, and properly interpret and communicate their results. Emphasis will be placed on the use of statistical software, data wrangling, model fitting, and assessment.

Intermediate Statistics

This course is an intermediate applied statistics course that builds on the statistical data analysis methods introduced in STAT 111/111E or STAT 135. Students will learn how to pose a statistical question, perform appropriate statistical analysis of the data, and properly interpret and communicate their results. Emphasis will be placed on the use of statistical software, data wrangling, model fitting, and assessment.

Intro to Stat Modeling

(Offered as STAT 135 and MATH 135) This course is an introductory statistics course that uses modeling as a unifying framework. The course provides a basic foundation in statistics with a major emphasis on constructing models from data. Students learn important concepts of statistics by mastering powerful and relatively advanced statistical techniques using computational tools. Topics include descriptive and inferential statistics, visualization, probability, study design, and multiple regression.

Intro to Stat Modeling

(Offered as STAT 135 and MATH 135) This course is an introductory statistics course that uses modeling as a unifying framework. The course provides a basic foundation in statistics with a major emphasis on constructing models from data. Students learn important concepts of statistics by mastering powerful and relatively advanced statistical techniques using computational tools. Topics include descriptive and inferential statistics, visualization, probability, study design, and multiple regression.

Intro to Stat Modeling

(Offered as STAT 135 and MATH 135) This course is an introductory statistics course that uses modeling as a unifying framework. The course provides a basic foundation in statistics with a major emphasis on constructing models from data. Students learn important concepts of statistics by mastering powerful and relatively advanced statistical techniques using computational tools. Topics include descriptive and inferential statistics, visualization, probability, study design, and multiple regression.

Subscribe to