Biochemistry w/Lab

(Offered as BIOL 331, BCBP 331, and CHEM 331) Structure and function of biologically important molecules and their role(s) in life processes. Protein conformation, enzymatic mechanisms and selected metabolic pathways will be analyzed. Additional topics may include: nucleic acid conformation, DNA/protein interactions, signal transduction and transport phenomena. Four classroom hours and four hours of laboratory work per week. Offered jointly by the Departments of Biology and Chemistry. A student may not receive credit for both CHEM/BIOL 330 and BCBP/BIOL/CHEM 331.

Biochemistry w/Lab

(Offered as BIOL 331, BCBP 331, and CHEM 331) Structure and function of biologically important molecules and their role(s) in life processes. Protein conformation, enzymatic mechanisms and selected metabolic pathways will be analyzed. Additional topics may include: nucleic acid conformation, DNA/protein interactions, signal transduction and transport phenomena. Four classroom hours and four hours of laboratory work per week. Offered jointly by the Departments of Biology and Chemistry. A student may not receive credit for both CHEM/BIOL 330 and BCBP/BIOL/CHEM 331.

Biochemistry w/Lab

(Offered as BIOL 331, BCBP 331, and CHEM 331) Structure and function of biologically important molecules and their role(s) in life processes. Protein conformation, enzymatic mechanisms and selected metabolic pathways will be analyzed. Additional topics may include: nucleic acid conformation, DNA/protein interactions, signal transduction and transport phenomena. Four classroom hours and four hours of laboratory work per week. Offered jointly by the Departments of Biology and Chemistry. A student may not receive credit for both CHEM/BIOL 330 and BCBP/BIOL/CHEM 331.

Biochemistry w/Lab

(Offered as BIOL 331, BCBP 331, and CHEM 331) Structure and function of biologically important molecules and their role(s) in life processes. Protein conformation, enzymatic mechanisms and selected metabolic pathways will be analyzed. Additional topics may include: nucleic acid conformation, DNA/protein interactions, signal transduction and transport phenomena. Four classroom hours and four hours of laboratory work per week. Offered jointly by the Departments of Biology and Chemistry. A student may not receive credit for both CHEM/BIOL 330 and BCBP/BIOL/CHEM 331.

Biochemistry w/Lab

(Offered as BIOL 331, BCBP 331, and CHEM 331) Structure and function of biologically important molecules and their role(s) in life processes. Protein conformation, enzymatic mechanisms and selected metabolic pathways will be analyzed. Additional topics may include: nucleic acid conformation, DNA/protein interactions, signal transduction and transport phenomena. Four classroom hours and four hours of laboratory work per week. Offered jointly by the Departments of Biology and Chemistry. A student may not receive credit for both CHEM/BIOL 330 and BCBP/BIOL/CHEM 331.

Molecular Neurobio w/Lab

(Offered as BIOL 301 and NEUR 301) An analysis of the molecules and molecular mechanisms underlying nervous system function, development, and disease. We will explore the proteins that contribute to the unique structure and function of neurons, including an in-depth analysis of synaptic communication and the molecular processes that modify synapses. We will also study the molecular mechanisms that control brain and synapse development as well as neuronal death and degeneration.

Molecular Neurobio w/Lab

(Offered as BIOL 301 and NEUR 301) An analysis of the molecules and molecular mechanisms underlying nervous system function, development, and disease. We will explore the proteins that contribute to the unique structure and function of neurons, including an in-depth analysis of synaptic communication and the molecular processes that modify synapses. We will also study the molecular mechanisms that control brain and synapse development as well as neuronal death and degeneration.

Cell Struct/Func w/Lab

(Offered as BIOL 291 and BCBP 291) An analysis of the structure and function of eukaryotic cells. Topics to be discussed include the cell surface and membranes, cytoskeletal elements and motility, cytoplasmic organelles and bioenergetics, the interphase nucleus and chromosomes, mitosis, meiosis, and cell cycle regulation. There will be three classroom hours consisting of both lectures and problem-solving sessions, and three hours of laboratory per week.

Requisite: BIOL 191, CHEM151/155, and CHEM161/165. Limited to 16 students. Fall semester. Professor Edwards.

Cell Struct/Func w/Lab

(Offered as BIOL 291 and BCBP 291) An analysis of the structure and function of eukaryotic cells. Topics to be discussed include the cell surface and membranes, cytoskeletal elements and motility, cytoplasmic organelles and bioenergetics, the interphase nucleus and chromosomes, mitosis, meiosis, and cell cycle regulation. There will be three classroom hours consisting of both lectures and problem-solving sessions, and three hours of laboratory per week.

Requisite: BIOL 191, CHEM151/155, and CHEM161/165. Limited to 16 students. Fall semester. Professor Edwards.

Ecology

(Offered as BIOL 230 and ENST 210) A study of the relationships of plants and animals (including humans) to each other and to their environment. We'll start by considering the decisions an individual makes in its daily life concerning its use of resources, such as what to eat and where to live, and whether to defend such resources. We'll then move on to populations of individuals, and investigate species population growth, limits to population growth, and why some species are so successful as to become pests whereas others are on the road to extinction.

Subscribe to