Tpcs In Geometry I
Inverse and implicit functions theorems, rank of a map. Regular and critical values. Sard's theorem. Differentiable manifolds, submanifolds, embeddings, immersions and diffeomorphisms. Tangent space and bundle, differential of a map. Partitions of unity, orientation, transversality embed-dings in Rn. Vector fields, local flows. Lie bracket, Frobenius theorem. Lie groups, matrix Lie groups, left invariant vector fields, tensor fields, differential form, integration, closed and exact forms. DeRham's cohomology, vector bundles, connections, curvature.