Plate Tectonics

An analysis of the dynamic processes that drive the physical evolution of the earth’s crust and mantle. Plate tectonics, the changing configuration of the continents and oceans, and the origin and evolution of mountain belts will be studied using evidence from diverse branches of geology. Present dynamics are examined as a means to interpret the record of the past, and the rock record is examined as a key to understanding the potential range of present and future earth dynamics. Three hours of class and two hours of laboratory each week.

Mineralogy

Minerals are the fundamental building blocks of planetary materials, are essential natural resources for human society, and they modulate earth and environmental systems. This course explores the origin, distribution, and scientific and societal relevance of minerals. Through project-based inquiry, students will investigate the chemical and physical properties of minerals across a range of spatial scales, from the scale of individual atoms, to that of a hand specimen.

Mineralogy

Minerals are the fundamental building blocks of planetary materials, are essential natural resources for human society, and they modulate earth and environmental systems. This course explores the origin, distribution, and scientific and societal relevance of minerals. Through project-based inquiry, students will investigate the chemical and physical properties of minerals across a range of spatial scales, from the scale of individual atoms, to that of a hand specimen.

Paleontology

This course focuses on the history of life as preserved in the sedimentary rock record. Students will learn how paleontologists and geobiologists use skeletal fossils, molecular fossils, and geochemical signatures to ask and answer questions about the evolution of ancient life and Earth history. Students will study the origination, radiation, and extinction of major groups of organisms in the context of global environmental change, with an emphasis on invertebrate and microbial life.

Paleontology

This course focuses on the history of life as preserved in the sedimentary rock record. Students will learn how paleontologists and geobiologists use skeletal fossils, molecular fossils, and geochemical signatures to ask and answer questions about the evolution of ancient life and Earth history. Students will study the origination, radiation, and extinction of major groups of organisms in the context of global environmental change, with an emphasis on invertebrate and microbial life.

Planet Earth

How well do you know the planet on which we live? In this course we will explore Earth from its core to  its surface, from the mountains to the deep ocean basins, from the past and present to the future. The  earth is an evolving and dynamic system, changing on time scales that range from seconds, to millennia,  to eons: volcanos erupt, earthquakes vibrate the globe, continents separate and collide, and mountains rise only to be worn away and rise again. What physical processes drive this dynamism? How does the  restless nature of Earth impact our residency?

Planet Earth

How well do you know the planet on which we live? In this course we will explore Earth from its core to its surface, from the mountains to the deep ocean basins, from the past and present to the future. The  earth is an evolving and dynamic system, changing on time scales that range from seconds, to millennia, to eons: volcanos erupt, earthquakes vibrate the globe, continents separate and collide, and mountains rise only to be worn away and rise again. What physical processes drive this dynamism? How does the restless nature of Earth impact our residency?

Planet Earth

How well do you know the planet on which we live? In this course we will explore Earth from its core to its surface, from the mountains to the deep ocean basins, from the past and present to the future. The  earth is an evolving and dynamic system, changing on time scales that range from seconds, to millennia, to eons: volcanos erupt, earthquakes vibrate the globe, continents separate and collide, and mountains rise only to be worn away and rise again. What physical processes drive this dynamism? How does the restless nature of Earth impact our residency?

Planet Earth

How well do you know the planet on which we live? In this course we will explore Earth from its core to its surface, from the mountains to the deep ocean basins, from the past and present to the future. The  earth is an evolving and dynamic system, changing on time scales that range from seconds, to millennia, to eons: volcanos erupt, earthquakes vibrate the globe, continents separate and collide, and mountains rise only to be worn away and rise again. What physical processes drive this dynamism? How does the restless nature of Earth impact our residency?

Oceanography

The global ocean is one of the defining features of our planet’s surface. It regulates weather patterns, sculpts the coasts of the continents, and contains records of the past 200 million years of earth's climate in sediment on the seafloor. In this course we will develop an understanding of the global marine system through study of its interconnected geological, chemical, physical, and biological processes. These fundamental principles include seafloor spreading, the transport of heat from the equator to the poles, and cycling of nutrients and organic matter by plankton.

Subscribe to