Mass and Heat Transfer

This upper-level course introduces the processes and accompanying mathematical representations that govern the transport of heat and mass, including advection, dispersion, adsorption, conduction, convection and radiation. Applications include environmental transport and mixing, cooling and heat exchange, and separation processes. Prerequisites: EGR 290 and EGR 374. Restrictions: Engineering majors only. Enrollment limited to 20.

Sem: Engineering in Sports

Understanding and improving performance in sports hinges on the modern application of science and engineering principles. This course serves as an introduction to how the sports industry uses physical modeling, data analysis, and product design to grow and improve their fields. Examples of class activities include predicting the limits of human performance, gaining insights about team strategy from large datasets, and redesigning sporting equipment with modern materials.

Engineering Thermodynamics

Modern civilization relies profoundly on efficient production, management and consumption of energy. Thermodynamics is the science of energy transformations involving work, heat and the properties of matter. Engineers rely on thermodynamics to assess the feasibility of their designs in a wide variety of fields including chemical processing, pollution control and abatement, power generation, materials science, engine design, construction, refrigeration and microchip processing.

Circuit Theory

Analog and digital circuits are the building blocks of computers, medical technologies and all things electrical. This course introduces both the fundamental principles necessary to understand how circuits work and mathematical tools that have widespread applications in areas throughout engineering and science. Topics include Kirchhoff’s laws, Thévenin and Norton equivalents, superposition, responses of first-order and second-order networks, time-domain and frequency-domain analyses, and frequency-selective networks. Required laboratory taken once a week. Corequisite: PHY 210.

Circuit Theory

Analog and digital circuits are the building blocks of computers, medical technologies and all things electrical. This course introduces both the fundamental principles necessary to understand how circuits work and mathematical tools that have widespread applications in areas throughout engineering and science. Topics include Kirchhoff’s laws, Thévenin and Norton equivalents, superposition, responses of first-order and second-order networks, time-domain and frequency-domain analyses, and frequency-selective networks. Required laboratory taken once a week. Corequisite: PHY 210.

Fundamental Eng Principles

The design and analysis of engineered or natural systems and processes relies on a command of fundamental scientific and engineering principles. This course provides an introduction to these fundamental underpinnings through a study of the conservation of mass, energy and charge in both steady and transient conditions with non-reactive systems. Specific topics covered include a review of process variables and their relationships, open and closed systems, differential and integral balances, and basic thermodynamics. Prerequisite: MTH 112, may be taken concurrently. Enrollment limited to 20.

Fundamental Eng Principles

The design and analysis of engineered or natural systems and processes relies on a command of fundamental scientific and engineering principles. This course provides an introduction to these fundamental underpinnings through a study of the conservation of mass, energy and charge in both steady and transient conditions with non-reactive systems. Specific topics covered include a review of process variables and their relationships, open and closed systems, differential and integral balances, and basic thermodynamics. Prerequisite: MTH 112, may be taken concurrently. Enrollment limited to 20.

Fundamental Eng Principles

The design and analysis of engineered or natural systems and processes relies on a command of fundamental scientific and engineering principles. This course provides an introduction to these fundamental underpinnings through a study of the conservation of mass, energy and charge in both steady and transient conditions with non-reactive systems. Specific topics covered include a review of process variables and their relationships, open and closed systems, differential and integral balances, and basic thermodynamics. Prerequisite: MTH 112, may be taken concurrently. Enrollment limited to 20.

T-Sustainable Water Resources

Students in this course investigate and design water resources infrastructure – for hydropower, water supply, wastewater treatment, stormwater management and irrigation. Those technologies are introduced through historical and contemporary examples, along with a theme of the importance of place in engineering design. In contrast to design as invention, this course puts the emphasis on the adaptation of common designs to particular places, as influenced by climate, physical geography, culture, history, economics, politics and legal frameworks.
Subscribe to