Fields And Waves I

The nature of electromagnetic fields and waves. Transmission lines modeled as distributed circuits. Propagation of waves and wave reflections on transmission lines. Review of vector analysis, coordinate systems, gradient, divergence, curl; review of surface and volume integrals. Electrostatic and magnetostatic fields and boundary conditions. Fields in conductors, dielectrics and magnetic materials. Time-varying fields and electromagnetic induction. Maxwell's equations for time-varying fields.

Computer Networks & Internet

This course explores the principles of computer networking and how the theoretical principles are implemented in practice. Introduction to concepts, principles, and practice of computer communication networks and the Internet with examples from existing architectures, protocols and standards. Emphasis on physical layer communication, data link layer protocols, routing protocols, transport layer protocols, application layer programming, network management, network security and wireless networks.
Prerequisites: E&C-ENG 122 (or CMPSCI 121) & E&C-ENG 242 (or CMPSCI 187)

Fields And Waves I

The nature of electromagnetic fields and waves. Transmission lines modeled as distributed circuits. Propagation of waves and wave reflections on transmission lines. Review of vector analysis, coordinate systems, gradient, divergence, curl; review of surface and volume integrals. Electrostatic and magnetostatic fields and boundary conditions. Fields in conductors, dielectrics and magnetic materials. Time-varying fields and electromagnetic induction. Maxwell's equations for time-varying fields.

Circuit Analysis II

With lab. Continuation of ECE 211. Analysis techniques for ac circuits, frequency response, resonance, Bode plots, phasor representation of sinusoidal steady-state systems, complex frequency domain, transfer functions. MOSFETs as amplifiers; operational amplifiers. Transformers, two-port networks, Fourier series. Lab includes circuit hardware and PSPICE simulation experiments.

Semiconductor Devices

In-depth examination of semiconductor devices. The physics of semiconductors, p-n junction diodes, bipolar transistors, Schottky barriers, JFETs, MFSFETs, MIS diodes, CCDs, and MOSFETs. Prerequisite: E&C-Eng 344, or introductory semiconductor theory course.

Signal Theory

Unified treatment of techniques for representation of signals and signal processing operations. Emphasis on physical interpre-tation of vector spaces, linear operators, transform theory, and digital signal processing with wavelet filter banks. Prerequisite: graduate standing.
Subscribe to