Molecular Genetics w/Lab

(Offered as BIOL 371 and BCBP 371) A study of the molecular mechanisms underlying the transmission and expression of genes. DNA replication and recombination, RNA synthesis and processing, and protein synthesis and modification will be examined. Both prokaryotic and eukaryotic systems will be analyzed, with an emphasis upon the regulation of gene expression. Application of modern molecular methods to biomedical and agricultural problems will also be considered. The laboratory component will focus upon recombinant DNA methodology.

Molecular Genetics w/Lab

(Offered as BIOL 371 and BCBP 371) A study of the molecular mechanisms underlying the transmission and expression of genes. DNA replication and recombination, RNA synthesis and processing, and protein synthesis and modification will be examined. Both prokaryotic and eukaryotic systems will be analyzed, with an emphasis upon the regulation of gene expression. Application of modern molecular methods to biomedical and agricultural problems will also be considered. The laboratory component will focus upon recombinant DNA methodology.

Molecular Genetics w/Lab

(Offered as BIOL 371 and BCBP 371) A study of the molecular mechanisms underlying the transmission and expression of genes. DNA replication and recombination, RNA synthesis and processing, and protein synthesis and modification will be examined. Both prokaryotic and eukaryotic systems will be analyzed, with an emphasis upon the regulation of gene expression. Application of modern molecular methods to biomedical and agricultural problems will also be considered. The laboratory component will focus upon recombinant DNA methodology.

Biochemical Principles

(Offered as CHEM 330 and BIOL 330) What are the molecular underpinnings of processes central to life? We will explore the chemical and structural properties of biological molecules and learn the logic used by the cell to build complex structures from a few basic raw materials. Some of these complex structures have evolved to catalyze chemical reactions with an enormous degree of selectivity and specificity, and we seek to discover these enzymatic strategies.

Biochemical Principles

(Offered as CHEM 330 and BIOL 330) What are the molecular underpinnings of processes central to life? We will explore the chemical and structural properties of biological molecules and learn the logic used by the cell to build complex structures from a few basic raw materials. Some of these complex structures have evolved to catalyze chemical reactions with an enormous degree of selectivity and specificity, and we seek to discover these enzymatic strategies.

Evolutionary Biology

Evolution is a powerful and central theme that unifies the life sciences. In this course, emphasis is placed on microevolutionary mechanisms of change, and their connection to large-scale macroevolutionary patterns and diversity. Through lectures and readings from the primary literature, we will study genetic drift and gene flow, natural selection and adaptation, molecular evolution, speciation, the evolution of sex and sexual selection, life history evolution, and inference and interpretation of evolutionary relationships. Three hours of lecture and one hour of discussion each week.

Evolutionary Biology

Evolution is a powerful and central theme that unifies the life sciences. In this course, emphasis is placed on microevolutionary mechanisms of change, and their connection to large-scale macroevolutionary patterns and diversity. Through lectures and readings from the primary literature, we will study genetic drift and gene flow, natural selection and adaptation, molecular evolution, speciation, the evolution of sex and sexual selection, life history evolution, and inference and interpretation of evolutionary relationships. Three hours of lecture and one hour of discussion each week.

Social Neuroendo w/Lab

(Offered as BIOL 313 and NEUR 313) How does the brain coordinate the relationship between hormones and social behaviors? To explore this question, the lecture portion of the course will address the foundational neuroendocrinological pathways such as the sex steroids, nonapeptides, and corticosteroids. We will read and discuss primary literature articles on how these pathways shape social behavior across domains including mate choice, reproduction, parenting, aggression, and stress.

Social Neuroendo w/Lab

(Offered as BIOL 313 and NEUR 313) How does the brain coordinate the relationship between hormones and social behaviors? To explore this question, the lecture portion of the course will address the foundational neuroendocrinological pathways such as the sex steroids, nonapeptides, and corticosteroids. We will read and discuss primary literature articles on how these pathways shape social behavior across domains including mate choice, reproduction, parenting, aggression, and stress.

Special Topics

Independent reading or research course. A half course. Does not normally count toward the major.

Fall and spring semesters. The Department.

How to handle overenrollment: null

Students who enroll in this course will likely encounter and be expected to engage in the following intellectual skills, modes of learning, and assessment: Varies by course but includes independent research, independent writing, reading and evaluating primary literature, data analysis, and quantitative reasoning.

Subscribe to